
 1

SCORESYNTH
a System for the Synthesis of Music Scores based on Petri Nets and

a Music Algebra †

Goffredo Haus, Alberto Sametti

L.I.M. - Laboratorio di Informatica Musicale

Dipartimento di Scienze dell'Informazione

Università degli Studi di Milano

via Moretto da Brescia, 9

I-20133 Milano (Italy)

0. Abstract

In this paper we show how we can synthesize music scores by executing formal models. The kind of

models we use is an "ad hoc" arrangement of Petri Nets and a music algebra; music objects are associated to

places ; music transformations are described by algorithms associated to transitions and are coded by

expressions which are based on the set of operators and the syntactic rules we have defined. This approach

allows us to describe music objects and their transformations at various levels of representation.

The ScoreSynth system is made up of the Editor and the Executer of the models. The Editor allows us to

describe hierarchical, timed, concurrent, deterministic/non-deterministic and weighted Petri Nets models; both

places and transitions are used as the "morphism" nodes to implement hierarchy. Common Petri Nets

structures can be described as macros. The Executer executes the models, synthesizes MIDI scores and shows

a graphic map of the music objects as they are generated by the model execution; the musician, while looking

at the graphic map, can interact with the model.

keywords: music objects, music operators, music algorithms, Petri nets, modelling, timing, concurrency,

synchronization, hierarchy, score synthesis, graphic user interface, macro structures

† This research is partially supported by the Italian National Research Council in the frame of the

MUSIC Topic (LRC C4, Grants N° 89.00031.69 and 90.00678.PF69): "INTELLIGENT MUSIC

WORKSTATION", Goal C: SISTEMI AVANZATI DI PRODUTTIVITA' INDIVIDUALE, Subproject 7:

SISTEMI DI SUPPORTO AL LAVORO INTELLETTUALE, Finalized Project SISTEMI INFORMATICI E

CALCOLO PARALLELO.

 2

1. Introduction

In this paper we show how music structures can be described, processed and synthesized by means of a

more flexible kind of representation than the staff; in fact, symbols are chosen and organized depending

deeply on instrumental needs within common music notation; the level of representation within scores is more

detailed than the one of music composition and more abstract than the one of timbre modelling; the new kind

of representation we are proposing makes up a conceptual music framework with as many different levels of

abstraction as the musician needs and allows us to explicitly describe and process what we call music objects

(MOs), both traditional music and non-traditional music objects. An MO means anything that could have a

musical meaning and that we think of as an entity, either simple or complex, either abstract or detailed, an

entity with a name and some relationship with other MOs.

Therefore, we can describe MOs at various abstraction levels within a hierarchical context of description;

for example, we can have the following: the structural level, the score level, the timbre level and any other

level we can think as a suitable one for our music representation purposes. Common music notation is

characterized by many different languages (one or more languages for each level of representation).

Furthermore, modern composers have introduced a myriad of notation conventions to represent concepts

which the common music notation cannot represent. Our work is devoted to the definition of a one and only

language, suitable both for every level of representation of common music information and for contemporary

music representation (i.e. concrete, electronic and computer music).

To identify the most suitable description tool we have sought a formal tool which has the following

properties:

* requires few symbols;

* has a graphical form of notation;

* allows hierarchical description;

* allows the description of MOs processing;

* allows time description;

* allows deterministic/non-deterministic models;

* allows macro definitions for common structures;

* shows the musician the score synthesized as the model execution goes on.

2. Score Modelling by Petri Nets and a Music Algebra

Since 1980 we have been using Petri Nets (PNs) as the basic tool for music description and processing (see

Degli Antoni & Haus1); other experiments have been carried out by S. Pope2 based on Predicate-Transition

Nets.

Throughout our research, we have developed some programs to edit and execute PNs for both music and

general purpose applications. The most recent program we have developed is ScoreSynth where we use PNs

for describing, processing and synthesizing music scores; while we associate MOs to place nodes for

describing music information, we associate transformation rules to PN structures and PN parameters

(marking, numeric labels, algorithms, etc.). MOs may be processed modifying the superimposition and

 3

juxtaposition laws within PNs structure; on the other hand, PN parameters allow us to create instances of

MOs which modify themselves according to the behaviour of PN models during executions. Furthermore, we

can represent the same musical information by PNs at a lower or higher level of abstraction by means of

suitable alternative modelling approaches. The modelling of music by PNs makes natural the description of

the structural level of music as a multilevel environment within which MOs may flow concurrently and

interactively; the more detailed levels of representation (the score and timbre levels) may be described and/or

processed depending on the user choices.

Indeed, a PN model with a particular initial marking may represent a family of scores; a particular

execution of the model synthesizes a specific score. By changing the initial marking of the model we change

the family of scores that can be produced by model executions. A special case: when we have a fully

deterministic model, we can produce one only score (given a particular initial marking).

The following paragraphs discuss the definition and implementation of music objects, Petri Nets and music

algorithms within the ScoreSynth system. ScoreSynth has been developed on the Macintosh® family of

computers within the MPW development environment.

2.1. Music Objects

The meaning of MO, as already mentioned, is strictly related to the place nodes in our implementation. By

MO we mean not only any sequence of notes but also something more general. Something that is not

exclusively linked to listening and is not connected with the idea of process, because it could last zero

seconds, as far as the measurement of time is concerned. For example, an MO may be a control command for

a sound synthesis device. Obviously the definition of MOs is partly affected by the standard of the music code

we use (MIDI) and must stay within the bounds of this standard. Appendix A gives the complete BNF

definition of MOs.

In this section we go through all kinds of MOs. In order to simplify the explanation, we name, without

distinction, a place or its associated MO everytime it is obvious. The reader must keep in mind, however, that

a place-node and an MO are two very different things. Moreover, we want to remember that the listening of a

score takes place in a different time than its synthesis, i.e. the performance of the PN models.

2.1.1. Notes

If an MO is formed only by notes, each note must be specified through the parameters which are necessary

for its reproduction through MIDI sound generators. These parameters are: the MIDI channel (that we can

nearly compare to the instrument), the pitch, the intensity, the duration. The duration is expressed implicitly,

by giving the starting and the ending point of a note. We want to remember that the MIDI standard imposes

some limitation on the values of these parameters, which we discuss at the end of § 2.7. Literature on the

MIDI standard is widely available.

 4

Figure 1: A simple MO.

2.1.2. Metaevents

All the events inserted in the coding of MOs which give general information on the score but are not

directly performed because they cannot be coded by MIDI codes belong to the Metaevent class.

Metaevents include the Tempo (beats per minute), the Base (ticks per quarter note), the Time Signature

(4/4, 3/4, 6/8, etc.) and rests. If there are rests, they must form a separate single MO because they cannot be

explicitly described by MIDI codes.

The general lines of the work impose an intrinsic limitation to the score synthetized by the execution of a

net. The first three types of metaevents are not coded directly into the score, but they are only a mark of the

last modification. All MIDI events, which build up the score, have an absolute timing reference expressed in

multiples of 0.5 msec. For this reason it is not possible to reconstruct a score in traditional notation if there is

just one modification, for example, in the time signature. This problem does not occur when the tempo

parameter remains fixed from beginning to end. This limitation affects the conversion of a PN model into a

traditional score, but not the performance of the model via MIDI.

2.1.3. Other MIDI Messages

All MIDI messages which are not directly concerned with a note can be put in an MO. If the message

belongs to the class Channel Voice, it can be put in the Note event; if the messages belong to other classes

(i.e. Channel Mode, System Common, Realtime, Exclusive) the MO must be formed by only one of these

messages and nothing else.

2.1.4. Coding Formats

MOs can be coded according to three syntaxes: a coding language which is unique to ScoreSynth, a

portable alphanumeric MIDI coding language and a coding format which implements the Standard MIDI Files

1.0 format (both type 0 and 1). The first format is used internally by the program. The second format has been

chosen for the sake of editing tools availability (i.e. common word processors). The third format has been

implemented for file import/export. So, MOs may be defined either by a common text editor or a MIDI

controller (a keyboard, a guitar, a microphone, etc.).

Before executing a PN model, ScoreSynth converts all the MOs (both ASCII and SMF) into the inner MIDI

format, the only format that ScoreSynth directly works with. If the original files don't undergo modifications,

they can be expelled in order to make the following executions quicker.

Building a net, the user can decide if a place node must have only a control role, namely without any chance

to have MOs associated. On the other hand, the user can choose if the MO must be always saved on a file

(permanent MO), for possible uses at the end of the execution, or kept in the memory (volatile MO), and so

remain only till the end of the execution. These choices cannot be modified during the execution.

There are two other possibilities for the user. The first is to redirect all the MIDI events of an MO on a

single specified channel among the attributes of the place to which the MO is associated. The second is to

 5

associate an MO to a place and to set whether it must be executed or it must be subject of following

transformations.

2.2. Petri Nets Implementation

A Petri Net is usually defined by a quadruple <P, T, A, M>, where P is the set of places, T is the set of

transitions, A is the set of arcs connecting both places to transitions and transitions to places, M is the marking

of the net. Our implementation of Petri Nets extends the "classic" definition of Petri3 (which is well

exemplified with respect to modelling features of PNs in Peterson4), so that the musician can build up

hierarchical music models defining MOs and music algorithms (MAs) made up of operator expressions. In

this way, a Petri Net is defined by means of the triplet <P, T, A> and the following three statements:

(1) P p <identifier, tokens, capacity, MIDI channel, object, play, file >

(2) T t <identifier, algorithm >

(3) A a <node-from, node-to, multiplicity >

where:

P is the set of places; T is the set of transitions; A is the set of arcs; identifier is the label of the node (both

place and transition); tokens is the number of tokens within the place, that is the value of the marking

function M (see below); capacity is the maximum number of tokens allowed for that place; MIDI channel

is the number of the MIDI channel where the MO, if one exists, has to be played; object defines whether an

MO may be associated to the place or not; play defines whether the object has to be played or not; file

defines whether the MO associated to the place, if one exists, is stored on file or not; algorithm defines

whether the MA associated to the transition, if one exists, has to be executed or not; node-from is the

identifier of the node which starts the arc; node-to is the identifier of the node which ends the arc;

multiplicity is the numeric label of the arc. If a place has an associated MO which is stored on file, its

identifier represents both the label of the node and the file identifier.

P, T and A are finite sets; P cannot be empty. Both objects and algorithms have their own syntax

definitions; they are discussed in Appendices A and B, respectively.

The marking of a net is the distribution of tokens into the place nodes; their number and distribution may

change during net execution. A marking function is defined as the following array:

(4) M (m1, m2, . . ., mi, . . ., mn)

where n is the number of places within the net, N is the set of positive integers and every N mi = M (pi)

with P pi.

Then, the hierarchy of the model is described by the set:

(5) S s <identifier, node-begin, node-end, recursion-level >

which is the set of hierarchy links,where:

identifier is the label of the net, node-begin is the identifier of the beginning node for the morphism

application, node-end is the identifier of the ending node for the morphism application, recursion-level is

the level of recursion allowed for that net. We discuss how hierarchy and recursion are implemented in the

ScoreSynth program in § 2.4. and 2.5., respectively.

 6

The S set represents all the information about the hierarchy of the model, while the P, T, A sets completely

describe a particular net of the model; in other words, a model is fully defined by an S set and as many triplets

<P, T, A> as the number of the nets within the model.

Petri nets are commonly represented in the graphic form; we too use a graphic form of representation with

the following set of icons:

2

5

Tokens

Capacity

p1 p2 t1 t2 t3 t4

4
Multiplic ity

Figure 2: Petri nets icons.

The above icons represent (from left to right): a named simple place with tokens and capacity attributes, a

named place which represents a subnet (see § 2.4. about morphisms), a horizontal named simple transition, a

vertical named simple transition, a horizontal named transition which represents a subnet, a vertical named

transition which represents a subnet and, at last, an arc with the multiplicity attribute set to four.

2.2.1. The Firing Rule

The execution of a net is made up of transition firings. A transition may fire if each one of the input places,

i.e. places which are connected with oriented arcs to the transition, has at least one token. The transition firing

has two effects: to decrement the marking of each input place by one token and to increment the marking of

each output place, i.e. a place which is connected with an oriented arc from the transition, by one token.

In the following paragraphs we see how this basic firing rule is affected by capacity, multiplicity and timing

parameters; this firing rule can be considered as a particular case of the firing rule we have defined for our

extended implementation of PNs; from this point of view we can describe the basic firing rule with the

following settings: all multiplicities are equal to 1, all capacities are infinite and all durations of transition

firings are null.

After the starting of a net, firings follow one another until there are no more transitions which may fire. At

the end of transition firings, the execution of the net stops.

2.2.2. Capacity

Capacity is a feature of place nodes which defines the maximum number of tokens allowed for each place.

The capacity feature implies that the firing rule previously defined has to be modified; conditions of transition

firings do not change with respect to the input places while transitions cannot fire if the marking of one output

place, at least, will exceed its capacity after transition firing, i.e. the marking of that place added by the

number of tokens due to transition firing is greater than its capacity.

Two simple examples show this concept. In Fig. 3a transition t1 cannot fire because place p2 is marked

with as many tokens as its capacity; in Fig. 3b only one transition may fire, either t1 or t2 but not both. This

simple net is a conflict structure, which is a non-deterministic one.

 7

p1 t1

1

p2

1

2

2

p1 t1

1

1

p2

0

1

p3

1

1

t2

a) b)

Figure 3: a) firing inhibition due to the capacity of the output place.

b) firing conflict due to the capacity of the output place.

2.2.3. Multiplicity

To improve Petri Nets' descriptive power and for the sake of graphic simplicity, we have assumed the

multiplicity extension, that is, the ability to add numerical labels on the arcs. The multiplicity extension is a

partial implementation of self-modifying nets, which were introduced by Valk5.

Also the multiplicity feature requires modifications to the firing rule: a transition may fire if each one of the

input places has at least as many tokens as the numerical label on the arc connecting the place to the

transition; the transition firing has now the following effects: it decrements the marking of each input place by

as many tokens as the numerical label on the arc connecting the place to the transition, and increments the

marking of each output place by as many tokens as the numerical label on the arc connecting the transition to

the place. Fig. 4 shows the behaviour of a transition firing within a simple net with multiplicity on some arcs.

p1 t1

p3

p2
1

2

0

p5
0

p40

p1 t1

p3

p2
0

0

1

p5
5

p43

a)

b)

2

3

5

2

3

5

Figure 4: an example of transition firing: a) transition t1 may fire;

b) the effect of the firing of transition t1.

 8

2.3. Timing

PNs are particularly suitable for describing concurrent processes and for controlling their synchronization

or lack thereof. When a transition may fire, we don't know when it fires; and the duration of firing is assumed

to be instantaneous. When we use PNs to describe asynchronous models we have no problem with this

feature. There are no measurements of time within Petri Nets: it is the behaviour of the net that implicitly

determines timings. It is the structure of the net which determines the firing sequence, without respect for their

durations. On the other hand, we can synchronize MOs simply by the suitable structuring of the nodes'

connections.

Finally, the firing sequence changes among different executions of the net; so there is no correspondence

between a net and its firing sequence. We can have many transitions qualified for firing at the same time and

we cannot know which one fires first: the net does not describe this kind of information. So, every execution

of a PNs model may give a different firing sequence.

This feature may seem to be too abstract for the modelling of real complex systems. Several approaches are

known regarding how to describe timed events' durations within PNs. Most of them represent timed events by

means of timed transitions. Our approach associates timed MOs to places and their transformations to

transitions. Both the firing of a transition and the execution of an associated MA have a null duration. In this

way, when a token is put into a place with an associated MO the token cannot be considered for the firing of

transitions connected to the place until the associated MO has ended.

Let us consider the net of Fig. 5; there are two places with associated MOs: MO A with place A and MO B

with place B. This example is concerned with the duration of processes but not with their meaning. MO A

lasts 1 second and MO B lasts 6 seconds. Every token which is put into place A is not disposable for 1 second;

tokens which are put into places p1 and p2 are immediately disposable, i.e. the amount of time which occurs

between the firing of t1 and that of t2 is null.

p1 t1

Ap2

t2

t3

B

0 0

1

5

5

1

1

0

6

Figure 5: example of timed net.

If place A has one token, then t2 cannot fire due to the capacity of place A; if place B has one token, then t3

can add tokens to place B (6 as the maximum) when it fires. The effect is that a certain number of instances of

MO B may run concurrently.

 9

Let us analyze some steps of the net execution. Fig. 6 shows the marking at time 0 after both t1 and t2

firings; we can see that both places A and B have their own token, so that MO A and MO B are running (see

Fig. 7); at the end of MO A (the shorter one), the token of place A is disposable and starts the firing of t3

which makes the second instance of MO B running; at time 1, one of the tokens of place p2 lets t2 fire, which

makes MO A running (see Figg. 8 and 9).

p1 t1

Ap2

t2

t3

B

1

1

5

0

1

1

6

4

5

Figure 6: the marking at time 0.

time
= Music Object A

= Music Object B

t

o

k

e

n

s
0 1 2 3 4 5 6 7 8 9 10 11

Figure 7: MOs started at time 0, after t1 and t2 firings.

p1 t1

Ap2

t2

t3

B

1

1

5

0

1

2

6

3

5

Figure 8: the marking at time 1, after both t3 and t2 firing.

 10

time
= Music Object A

= Music Object B

t

o

k

e

n

s

0 1 2 3 4 5 6 7 8 9 10 11

Figure 9: running MOs at time 1; new MOs started at time 1.

The firing sequence happens every second in the same way four times; the last firing happens at time 5; the

complete result of the net execution is shown in Fig. 10.

0 1 2 3 4 5 6 7 8 9 10 11

= Music Object A

= Music Object B

time

t

o

k

e

n

s

Figure 10: the complete map of the MOs generated at the end of the firing sequence.

2.4. Morphisms

Theoretical literature about morphisms and related formalisms is broad and multifaceted. We limit our

discussion to a particular kind of morphism which seems to be suitable for our purposes: the refinement

morphisms. The hierarchical approach introduced by Kotov6 is rather close to our implementation.

Refinements can define very complex PNs models by means of simple PNs and hierarchical structures, i.e.

allowing models to be designed by either a top-down or a bottom-up approach. A refinement, that we call a

subnet, is a PN which gives a more detailed description of a node (either a place or a transition) of the upper

level of abstraction. We call that node the "father" node and that subnet the "daughter" net.

 11

0

1

p1

0

1

input

0

1

output a)

p2

0

1

p1

b)

0

1

input

0

1

output

c)

Figure 11: a) the net we have designed; b) the high level net; c) the p2 subnet.

If we choose to define a subnet associated to a place, then the daughter net must have two special places:

the input place and the output place; input arcs of the father place are input arcs of the input place of the

daughter net; output arcs of the father place are output arcs of the output place of the daughter net. Transitions

can be refined in the same way. An example of a subnet which refines a place is shown in Fig. 11a, 11b and

11c.

The conceptual framework of our approach is discussed in Haus & Rodriguez7. This approach describes a

whole complex model as a single large net; this large net may be either the result of many refinement steps in

the frame of a top down detailing (see also Goguen8), or the starting information basis on which we can apply

abstractions as many times as we want to implement the hierarchical structure in the frame of a bottom up

modelling (see also Bertoni et al.9).

2.5. Recursion

Recursive nets can also be modelled. Both direct and mutual recursion are allowed. In ScoreSynth to avoid

recursive expansions with no end, we must assign to every recursive net its recursive level number. That is to

say, we have to specify how many times the net can call itself. As an example see Fig. 12. In this model we

use a recursive net: p1 (Fig.12b). If we choose a recursion level equal to 1 (only one call of a net inside itself),

we obtain the expanded net of Fig. 13, in which the dashed lines represent the deleted arcs during the

sequence of recursive refinement steps (depth first) that give the expansion and the bold lines represent the

added arcs needed to implement refinement morphisms. Input is the input place of net p1. p1 is the output

 12

place of net p1. Numbers in the small squares near the bold lines indicate the step of the expansion in which

the arcs are added. Numbers in the small circles near the dashed lines indicate the step of the expansion in

which the arcs are deleted.

p1

1

1

Start p1

0

1

Input

a) b)

0

1

End

Figure 12: a) simple recursion example net; b) recursive subnet p1.

p1

0

1

Input

p1

0

1

Input

p1

1

1

Start

0

1

End

1 1

2

21

2

2

1

Figure 13: the result of the expansion of place p1 with recursion level 1.

2.6. Structuring Music Objects

Starting from two simple MOs (p1 and p2 of Fig. 14), we can see the elementary structures in Fig. 15

necessary to design more complex nets. The places with a name are those to whom an MO is associated.

When a token reaches a place with an MO, it activates a "process" that is the execution of the MO itself. This

"process" stays in the running state for all the duration of the MO. In Fig. 15 we also show the scores

resulting from the executions of the corresponding nets.

p1

p2

Figure 14: the two MOs p1 and p2

 13

p1 p2

Sequence
1

1

0

1

Split 1

1

0

1

0

1

p1

p2

p2

Alternative 1

1

0

1

0

1

p1

Joint

1

1

1

1

0

2

p2

Fusion

1

1

1

1

0

1

p1

Figure 15: elementary PN structures.

A very special case is the third one. This kind of net introduces non-determinism. In this case ScoreSynth

determines the firing sequence with a pseudorandom uniform distribution. All the considered elementary

structures, can freely be joined to form more complicated PNs structures.

 14

A little more complex structure is the loop structure. Two possible implementations are shown in Fig. 16.

2
2

0
2

Start End

0
1

p1

a)

2
2

Start

Counter

SubNet

1
1

b) 0
1

p1

c)

Figure 16: two different PNs (a , b + c) for the loop structure
and the score resulting from their execution.

2.7. Music Algorithms

In this paragraph we briefly discuss how we have implemented the ability to work with MOs in ScoreSynth.

The main idea is to allow transformations of both the parameters of sound (pitch, timbre, intensity, duration)

and the order in which notes appear. Appendix B gives the complete BNF definition of MAs.

MAs join with transitions. If a transition has an associated MA, when the transition fires the MA is applied

to the MOs associated to the input places and the outcoming object is placed in all the output places allowed

for MOs. During the processing of an MA, it is also possible to use information from every MO available at

that moment. We have observed that the modelling of music is as greatly improved as the expressive power of

the formal language adopted if it is possible to have all the model information at disposal. We have studied

formalisms which allow us to reach all nodes within the model without loss of time. In early research we have

considered an approach which was similar to that of the statecharts introduced by Harel et al.10; then, we have

defined a simpler mechanism which allows the immediate availability of all the information of the whole PN

model as possible input arguments for MAs.

An MA can be formed by one or more single transformation. Each transformation may affect either the

notes' parameters or their order. Before making a transition fire, ScoreSynth merges all the MOs in the

entrance of a transition; it applies the transformation on the single MO obtained and associates the outcome of

 15

the transformation to each of the output places to which is possible to associate an MO. The transformation

can be applied only to note events. All the other MIDI commands are filtered and lost.

2.7.1. Metacharacters, constants, variables

If X stands for the object on which the MA is processed at the input, the MA can be applied to the whole X

or just to one of its subsequence, chosen by the user by the definition of the positions of both the first and the

last note. The MA is applied to the range of notes which is set in its header, to each note as it occurs. The

header also defines the kind of parameter to which the operator expression must be applied: pitch, duration,

intensity (key velocity), MIDI channel and the order of the affected notes.

When we draw up an operator expression we can use metacharacters, i.e. special characters, which are

needed to determine relevant transformations. The implemented metacharacters are: $, ?, !, %. While $ and %

are the same as constants, ? and ! are variable quantities. We examine them one by one:

- $ contains the total number of the notes in X;

- % contains the total number of the notes in the subsequence of X on which we have defined to operate;

- ? contains the value of the parameter, referred to the current note, that we want to change;

- ! is an index that contains the position of the note on which the operator expression works; the position

values is referred to the first note to be changed within the sequence.

2.7.2. Operators' Syntax

As we have already mentioned, the parameters of the sound that we can modify at the level of MIDI code

are pitch, duration, MIDI channel and intensity (key velocity).

Without dwelling on the concept of channel in MIDI, we want to explain that a channel stands

approximately for an available instrument; we cannot directly operate on the characteristics of the sound, but

only change the channel on which we want to send the notes.

The nucleus of an operator expression is simply an integer expression, that is, an expression with operators

+(sum), -(subtraction), *(multiplication), /(division) and parentheses (,). The terms of an operator expression

can be integers, metacharacters, alphanumeric pitch codes.

Here is an example to show a syntactically correct operator expression, with symbols, pitch, metacharacters

and integers:

(2 * C3 / 4 - ?) * !

Each of these operator expressions must be preceded by a header that specifies to which parameter the

operator expression is applied and which part of an MO must be transformed.

 16

We mention the meaning of each terminal character that identifies the kind of transformation:

 C (Channel) = operator on channels;

 D (Duration) = operator on durations;

 L (Loudness) = operator on intensities;

 M (Multiply) = operator for multiplying notes;

 R (Rotate) = operator for rotating notes;

 P (Pitch) = operator on pitches;

 I (Inversion) = operator for inverting the ordering of notes;

 K (Kill) = operator for deleting notes;

 S (Save) = operator for preserving notes.

In order to use information about any MO with respect to duration (rhythm), pitch, MIDI channel and

intensity, it is possible to specify the identifier of the MO and the starting note inside it.

For example, P: 1, $, [Theme, 1], ? + 2 means that, to compute the new values for the pitches of the current

MO, the pitch values of the notes within the MO Theme (starting from the first note) are used. In this

example metacharacter ? is referred to the MO Theme, while $ to the current MO. See figure 17 for a simple

net that shows the use of such an MA associated to Alg transition. The new MO obtained from the

transformation of Theme is joined to the place Theme.mod.

Theme Start Theme.mod

0

1

Alg

1

1

0

1

Figure 17: a simple net with an MA.

If the upper bound of the range exceeds the ordering number of the last note in Theme, then it is

automatically modified to fall inside the bounds. If the current MO is empty then not only the pitch values of

Theme are taken, but also channel, duration and intensity values, according to the range specifications.

2.7.3. Operators' Examples

Starting from an MO (see Fig. 18 below) we will show some examples of feasible operators with a table

containing on the left the operator and on the right the resulting MO.

 17

 {the starting

MO}

P: 1, $, ? + 1 {Tonal

Transposition}

P: $ - 2, $, 2 * G3 - ? {Specular Inversion }

P [C] : 1, $, ? + 1 {Degree Transposition}

D : 1, $, ? * 2

L: 1, $, ! * (127 / %) {Crescendo}

L: 1,$, (%-!+1) * (127/%) {Decrescendo}

I: 2, 5 { Retrogradation }

R: 2, 5, 1 { Rotation }

M: 2, 5, 2

K: 2, 6

S: 5, 7

Figure 18: examples of operators.

Operators on pitches can even be applied according to scales which are different from the chromatic one;

this must be done if we want the outcoming sequence in the same tonality as the beginning one. ScoreSynth

 18

has the following set of scales on which we can operate: major, harmonic minor, pentaphonic, minor thirds,

Debussy's whole tones. The third operator, for example, uses a C major scale as indicated by the statement

[C].

These are the choices made by ScoreSynth when the result of operator expressions goes beyond upper and

lower bounds:

Channel (1..16): we obtain the channel with a mod16 operation;

Pitch (0..127,C -2..G 8): if the value obtained is more than 127, then we subtract the cardinality degree of

the current scale as many times as is needed to obtain an allowable pitch value; if the value obtained is less

than 0, then we must add the cardinality degree of the current scale as many times as necessary to obtain an

allowable pitch value;

Duration : if it is less than 0, then it is set to 0;

Intensity : if it is less than 0, then it is set to 0; if it is more than 127, then it is set to 127.

2.8. "Macro" Petri Nets

When we are designing a net model, we often have to create many similar nets, which differ in their place

attributes and MAs, but which are identical in their structures. With a macro net we can use just one net as the

base model and then modify its attributes and/or MAs at our need. So it is also possible for the user to create

his own libraries, containing commonly used PN models. Appendix C gives the complete BNF definition of

macro nets.

The way we can do this is by writing, for every subnet place or subnet transition we want, a modifier list for

the net which is loaded into memory and actualized before the execution of the whole expanded net.

0

1

p1

0

1

Theme

0

2

output c)

p2

p1

a)

input

0

1

output

b)

0

1

0

1

2

Alg

t1

Figure 19: a) the top level net; b) the subnet p2;

 19

c) the net resulting from the macro expansion.

 20

An example that shows the use of a macro net invoked by a modifier list is included in the net model of

Fig. 19; we choose to expand place p2 using the following modifier list :

 input : Theme { change the name of place "input"

 mute and tell not to play it }

 output : C = 2 { change the capacity of place "output" }

 t1 : Alg {C : 1, $, 3 { change the name of transition "t1" and add an algorithm

 P : 1, $, ? + 1} consisting of two operators }

 Alg -> output = 2 { change the multiplicity of arc "Alg -> output" }

3. Score Synthesis

3.1. Model Execution

Here we briefly discuss the main steps of the model execution algorithm. Appendix D gives a pseudocode

version of the algorithm, but first we introduce such a "code" with a natural language explanation.

The main loop is included in the Execute procedure. The Execute procedure controls again and again the

passing from a temporary blocking to the following; a temporary blocking happens when all the tokens within

a net are in places either with an associated MO or without output arcs or with all output transitions which

cannot fire.

The minimum time interval (DeltaTime) is computed for every cycle among all the active MOs within

which one process at least terminates. Next, all active processes are executed for a DeltaTime number of time

units; the variable which represents the virtual clock is increased by DeltaTime units; all terminated processes

are deleted from the list of active processes. Execution stops when the Firings function evaluates that no

transitions have fired and no active processes exist.

The Firings function takes care of transition firings. It simulates again and again the execution of all

transitions either which may fire in the frame of alternative and/or conflict net structures or which may have

simple firings (i.e. which don't belong to alternative and/or conflict net structures), until there are no more

transitions which may fire. The Firings function returns control to the Execute procedure when there is a

temporary block, that is, no more transitions may fire at that time.

3.2. The ScoreSynth Executer

In the Executer environment the user can interact with some window dialogues that we are going to

describe. The main dialogue is that of Fig. 20. It gives to the user some facilities concerning the playback of

the generated scores. The user can control up to 10 scores in this dialogue and can modify some listening

parameters of the current selected score. It was not our intent to design a complete sequencer environment. If

the user wants all the features included in any commercial sequencer he has only to export the score as

Standard MIDI File.

 21

These are our sequencer features: Play, Stop, Pause and Rewind the song; changing the tempo velocity in

the column named Vel; starting playing the score at different points using the scale under the Pause button;

looping the song from the starting point to the end; reassigning MIDI channels, defined during the PNs model

execution phase, to other ones.

It is also possible to interact with the execution of the net model invoking the Music Objects Map dialogue

that we'll discuss in the next paragraph.

Figure 20: the Executer window.

3.3. Music Objects Map

A musician trying to create a net model suitable for his purposes may often want to see on the screen how

the execution of his model proceeds and the causal relationships between transitions' firings and score

synthesis, i.e. MOs appending in the score. In this way, he can stop the execution as soon as he finds a bug in

the model and go to the editor environment in order to modify it. This is possible simply by running the

execution of the model and looking at a graphic window that shows on a time-MIDI_channel plane the map of

MOs as they are appended in the score.

Two possibilities are available: either simply to run the execution and look at the growing map, or to run the

execution, while looking at the map, and automatically stop it every time a new MO is created (i.e. every time

a token reaches a place with an associated MO).

In the last case, the user who discovers a bug (e.g. a token gone elsewhere) can obtain all the information

about places' and transitions' attributes and make the needed improvements on the current model.

 22

Fig. 21 shows the dialogue that displays in the upper part the running execution in a graphic form. The

vertical scroll bar lets the user move on the MIDI channel axis (1 to 16); the horizontal scroll bar lets the user

move on the time axis. The user can select the time scale opening a dialogue by clicking the "scale" box near

the point (0, 0). In the lower part the dialogue shows all the information the user may need to control the

execution of the net model (all the attribute values of places and transitions every time the user stops the

execution).

Figure 21: object map dialogue with attributes.

4. Ending Remarks

Our research has shown that music structures within PN models can be transformed simply by:

* modifying markings, MIDI channel specifications, capacities of places;

* modifying labels of arcs;

* modifying MOs associated to places;

* modifying MAs associated to transitions;

* modifying the structure of PNs;

* executing non-deterministic PN models many times.

While the editing of PN structures and parameters affects causal/structural relationships within the

architecture of scores, the editing of both MOs and MAs affects the basic information units and their

transformations. The ScoreSynth system seems to be a powerful means for describing and processing music,

 23

closer to music thinking and perception than common music notation. People interested in a wider listening to

of pieces synthesized by PN models execution can consider the collection "Musiche per poche parti" by G.

Haus (compact disc Stile Libero/Virgin Dischi, SLCD1012, Milano, 1990). Other music productions are

currently in the workings.

Acknowledgements

Many thanks to E. Bianchi, A. Camurri, G. Degli Antoni, G. Jacomini, A. Rodriguez and R.

Zaccaria for their contributions to previous researches and experiences about Petri Nets and music.

Particular thanks to S. Scolaro for his relevant contribution in the design and development of some

features of the ScoreSynth Rel. 2.0 (graphic interface and PNs' macros, especially). Moreover, special

thanks are due to the L.I.M.-Laboratorio di Informatica Musicale staff for the scientific and technical

support provided all throughout our research.

Macintosh® is a registered trademark of Apple Computer, Inc.

5. References

1. G. Degli Antoni, G. Haus, "Music and Causality", Proc. 1982 ICMC, Venezia, Computer Music

Association Ed., San Francisco, 1983, pp. 279-296.

2. S. Pope, "The Development of an Intelligent Composer's Assistant", Proc. 1986 ICMC, Den Haag,

Computer Music Association Ed., San Francisco, 1986, 16 pp..

3. C. A. Petri, "General Net Theory", Proc. Joint IBM & Newcastle upon Tyne Seminar on Computer

Systems Design, 1976.

4. J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, New Jersey, 1981.

5. R. Valk, "Self-Modifying Nets, a Natural Extension of Petri Nets", ICALP 1978, LNCS, N. 62, Springer,

Berlin, 1978, pp. 464-476.

6. V. E. Kotov, "An Algebra for Parallelism based on Petri Nets", MFCS 1978, Proc. 7th Symposium,

Zakopane, Polonia, Springer, Berlin, 1978.

7. G. Haus, A. Rodriguez, "Music Description and Processing by Petri Nets", 1988 Adv. Petri Nets, LNCS,

N.340, Springer, Berlin, 1989, pp.175-199.

8. J. A. Goguen, "Complexity of Hierarchically Organized Systems and the Structure of Musical

Experience", UCLA Computer Science Dept. Quarterly, Vol. 3, N. 4, 1975.

9. A. Bertoni, G. Haus, G. Mauri, M. Torelli, "A Mathematical Model for Analyzing and Structuring

Musical Texts", Interface, Vol. 7, N.1, Swets & Zeitlinger B.V., Amsterdam, 1978, pp.31-43.

10. D. Harel, A. Pnueli, J. P. Schmidt, R. Sherman, "On the Formal Semantics of Statecharts", Proc.

Symposium on Logic in Computer Science, Ithaca, New York, IEEE Computer Press, Washington, 1987,

pp. 54-64.

11. S. W. Smoliar, A Parallel Processing Model of Musical Structures, PhD. Th. MIT, TR-242, MIT,

Cambridge, MA, 1971.

 24

12. P. Greussay, Modeles de descriptions symboliques en analyse musicale, M. Th. in Linguistics and

Informatics, Université Paris VIII, Paris, 1973.

 25

Appendix A: Music Objects BNFs

The following BNFs describe the syntax of MOs:

< MusicObject > ::= < MusicObject > . < MetaEvent > |

 < MusicObject > < MIDIEvent > |

 . < MetaEvent > |

 < MIDIEvent >

< MetaEvent > ::= Tempo < integer > |

 Base < integer > |

 Signature < integer > < integer > |

 Rest < integer > |

 MidiEx < MIDIExBytes >

< MIDIExBytes > ::= " ...any sequence of bytes, in hex, according to MIDI..."

< MIDIEvent > ::= < Header > Pgm < integer > |

 < Header > After < integer > |

 < Header > Polyp < integer > |

 < Header > Ctrl < integer > < integer > |

 < Header > Bend < integer > |

 < Header > < NoteEvent >

< Header > ::= < Channel > < Quarter > < Offset >

< NoteEvent > ::= < Duration > < Pitch > < KeyVel >

< Pitch > ::= < Note+Mod > < Octave > | < KeyNumber >

< Note+Mod > ::= < Note > | < Note > #

< Note > ::= A | B | C | D | E | F | G

< Channel > ::= 1 | ... | 16

< Quarter > ::= < positive integer > {...depends on song length}

< Offset > ::= < positive integer > {...depends on .Base}

< Duration > ::= < positive integer >

< KeyVel > ::= 0 | ... | 127

< Octave > ::= -2 | ... | 8

< KeyNumber > ::= 0 | ... | 127

 26

Appendix B: Music Algorithms BNFs

The following BNFs describe the syntax of MAs:

< Algorithm > ::= < Algorithm > < Operator > | < Operator >

< Operator > ::= < QualOp1 > : < RangeExpression > , < RangeExpression > |

 < QualOp2 > : < RangeExpression > , < RangeExpression > ,

 < OpExpression > |

 < QualOp3 > < TonalExpression > : < RangeExpression >,

 < RangeExpression > , < OpExpression > |

 < QualOp3 > < TonalExpression > : < RangeExpression >,

 < RangeExpression > , [< MusicObjectId > , < RangeExpression >],

 < OpExpression > |

 < QualOp4 > : < RangeExpression > , < RangeExpression > ,

 < OpExpression > |

 < QualOp4 > : < RangeExpression > , < RangeExpression > ,

 [< MusicObjectId > , < RangeExpression >] , < OpExpression >

< QualOp1 > ::= I | K | S

< QualOp2 > ::= M | R

< QualOp3 > ::= P

< QualOp4 > ::= C | D | L

<MusicObjectId > ::= "... alphanumeric string ..."

< TonalExpression > ::= [< Note > < Tonality >] | [< Note >]

< Tonality > ::= m | - | t | p

< RangeExpression > ::= < RangeExpression > + < RangeTerm > |

 < RangeExpression > - < RangeTerm > |

 < RangeTerm >

< OpExpression > ::= < OpExpression > + < OpTerm > |

 < OpExpression > - < OpTerm > |

 < OpTerm >

< RangeTerm > ::= < RangeTerm > * < RangeFactor > |

 < RangeTerm > / < RangeFactor > |

 < RangeFactor >

< OpTerm > ::= < OpTerm > * < OpFactor > |

 < OpTerm > / < OpFactor > |

 < OpFactor >

< RangeFactor > ::= < integer > |

 < MetaChar >|

 (< RangeExpression >)

 27

< OpFactor > ::= < Pitch > |

 < integer > |

 < MetaChar >|

 (< OpExpression >)

< MetaChar > ::= $ | ! | % | ?

< Pitch > ::= < Note+Mod > < Octave > | < KeyNumber >

< Note+Mod > ::= < Note > | < Note > #

< Note > ::= A | B | C | D | E | F | G

< Octave > ::= -2 | ... | 8

< KeyNumber > ::= 0 | ... | 127

The three integers that form the Header specify the MIDI channel to which the event and the instant when

the event must take place are referred. The first stands for the MIDI channel. The second and the third show

the moment connected with the Base and the Tempo chosen.

For example, if we have chosen Base 24, an Header equal to 1 2 12 shows that an event must be sent on

channel 1 in the middle of the second quarter, namely after a quarter plus an eighth. In the example at the end

of this paper, we give an example of a complete MO coded with respect to this syntax.

These are the choices made by ScoreSynth when the values of the Range go beyond the upper and lower

limits: if the lower limit is less than 1 then it is set to 1; if the upper limit is greater than the maximum number

of notes in the MO then it is set to the maximum value allowed.

 28

Appendix C: Macro Nets BNFs

The BNFs listed below define the syntax of modifier lists:

< ModifierList > ::= < ModifierList > < Modifier> | <Modifier>

< Modifier> ::= < PlaceModifier > | < TransModifier > | < ArcModifier >

< PlaceModifier > ::= < PlaceId > : < PlaceOpList >

< PlaceOpList > ::= < PlaceOpList > < PlaceOp > | < Place Op >

< PlaceOp > ::= < PlaceAttribute > | < PlaceSetting >

< PlaceAttribute > ::= play | mute | file | notfile | obj | notobj | simple | subnet

< PlaceSetting > ::= < NewId > |

 C = < Capacity > |

 M = < Token > |

 CH = < Channel > |

 { < MusicObject > }

< TransModifier > ::= < TransId > : < TransOpList >

< TransOpList > ::= < TransOpList > < TransOp > | < TransOp >

< TransOp > ::= < TransAttribute > | < TransSetting >

< TransAttribute > ::= enabled | disabled

< TransSetting > ::= < NewId > |

 { < Algorithm > }

< ArcModifier > ::= < PTArcOp > | < TPArcOp >

< PTArcOp > ::= < PlaceId > -> < TransId > = < Multiplicity >

< TPArcOp > ::= < TransId > -> < PlaceId > = < Multiplicity >

< Multiplicity > ::= 1 | ... | 240

Appendix D: The Model Execution Algorithm

The algorithm listed below is the most abstract level of the PNs execution algorithm we have defined; it is

written in Pascal-like code:

 29

procedure Execute;

begin

 repeat

 Blocked := NOT (Firings); {see the Firings function below}

 if ... no music process is active... then No_Active_Places := TRUE
 else

 begin

 No_Active_Places:= FALSE;
 compute DeltaTime for the processes (one or more) that terminate as the first;
 execute all active processes for a DeltaTime number of time units;
 delete all terminated processes from the list of active processes;
 increase of DeltaTime units the virtual clock variable;
 end;

 until Blocked & No_Active_Places;

end;

function Firings: boolean;{It returns TRUE if at least one transition fires}
begin

 repeat

 create the list of transitions which may have simple firings;
 create the list of transitions which may fire in the frame
 of alternative and/or conflict net structures;
 if ... there exists, as the minimum, a transition which may fire ... then

 begin

 Firings:= TRUE;

 while ...there exist transitions which are in alternative and/or in conflict ... do

 begin

 generate a pseudorandom index with uniform distribution for
 transitions which may fire in the frame of alternative and/or
 conflict net structures;
 execute the transition with respect to the generated index;
 delete all the transitions which are no more in alternative and/or
 in conflict from the proper list;
 end;

 execute all transitions which may have simple firings;
 end

 else

 Firings:= FALSE;

 until ...there is no transition which may fire ... ;
end;

For the sake of completeness, let's take a look to the procedure that executes a transition firing:

procedure ExecuteTrans(TransId);

 {TransId is the identifier code of the transition to be executed}
begin

 if ...transition has an associated algorithm ... then execute the algorithm;

 decrease the marking of input places according with the firing rule and multiplicities of arcs;
 increase the marking of output places according with the firing rule and multiplicities of arcs;
 for all output places:

 30

 if ...place has an associated MO ... then

 insert the associated MO in the list of active processes;
end;

