
The Score Analysis/Re-Synthesis
Environment of the

"Intelligent Music Workstation"

Goffredo Haus, Alberto Sametti

L.I.M. - Laboratorio di Informatica Musicale

Dipartimento di Scienze dell'Informazione

Università degli Studi di Milano

Introduction

The environment for the analysis/re-synthesis of scores sets up the most abstract

level (structural/symbolical) of the "Intelligent Music Workstation" (Pighi et al.,

1993). It provides terminal oriented aids for the automatic decomposition of

scores, for the synthesis of generative models based on the results of the

decomposition, and for the execution of these models. This environment aims at

increasing individual productivity on the part of both musicologist and

composer. In fact, it allows us to recognize hidden structures in the scores and to

use them either to give a more abstract and structural representation of the same

scores or to create a variety of scores with structural features (according to the

musician) more or less related to those of a given one. The environment consists

of three software modules: ScoreSegmenter (for the decomposition),

ModelSynth (for the synthesis of the generative models), ScoreSynth (for the

execution of the models or for the synthesis of new scores). We also underline

that the execution with ScoreSynth of a model generated by ModelSynth, with

no changes by the musician, will result in the generation of the starting score

which had been decomposed with ScoreSegmenter.

Software Architecture

In this chapter we will analyze the most general software architecture making up

the basic context of the central module ModelSynth. As shown in Fig. 1 the

other two modules ScoreSegmenter and Scoresynth are directly linked with it.

Here here we briefly describe the peculiarities of the three modules.

ScoreSegmenter aims at the segmentation of musical passages as a first step for

their future automatic instrumentation proposed by the computer. It is the focus

of the research of the various music objects with which the passage is

composed. By "object" we intend those musical fragments that the author has

expressed, taking and transforming them according to various musical canons in

relation to the historical period and composition form. This is a software

prototype which allows us to approach musical texts not as a pure sequence of

notes but as an expressive building consisting of some basic elements

functionally structured according to a number of different forms.

ScoreSegmenter is also essentially an analysis tool. ScoreSynth, on the contrary,

is a synthesis tool. It makes available an integrated environment for the creation,

debugging and execution of hierarchically organized models of musical scores

based on Petri Net formalism. The primary aim of the ScoreSynth module is to

put at the musician's disposal a very powerful and effective tool which allows

him to consider the composition from an architectural point of view: the

"musician" manipulates sequences, functions of transformation and structures.

Finally, ModelSynth allows the translation (in terms of Petri Net models

achievable by Scoresynth) of the results of the analysis operated by the module

ScoreSegmenter. (see Fig. 2)

Functional and I/O specifications

Considering the three modules from a functional viewpoint, we now examine

what transformations define and what are their individual fields.

ScoreSegmenter

ScoreSegmenter is able to read a score expressed in traditional music notation

and to create a supporting file (called Workingfile), through which it can

perform its own analysis, the different themes in SMF format (Standard MIDI

File 1.0) and, most important, a textual table containing the results of the

researches (Lonati, 1991a) (Lonati, 1991b). This last table, for each theme or

fragment found, reports the following information: the voice, the starting note

and the final one within the score, the operator (when applied), and the first

recognized note of the theme. From now on we will refer to each line of the

table with the term "atom". In order that the ScoreSegmenter tables are

significant we have to fix the planning input data of the segmentation so as to

carry on exclusive searches into fragments and themes. In this way it is possible

to avoid that a sequence of notes, in a certain position in the score, belongs to

more than one theme or fragment.

ModelSynth

ModelSynth reads the recognized and stored fragments in SMF format and the

textual table produced by the analysis of the ScoreSegmenter; it analyzes them

iteratively in order to recognize structures describable by means of Petri Nets;

finally, it synthesizes a generative hierarchic model of Petri Nets, achievable by

ScoreSynth, having the fragments in SMF format linked to suitable place nodes

(knots) of the model.

ScoreSynth

As already said ScoreSynth allows the editing, debugging and execution of

models of Petri Nets oriented to the synthesis of MIDI music scores. For a

detailed description of the functionalities see Haus and Sametti (1992).

How the module ScoreSegmenter performs the analysis
task

A first fundamental aspect of the module consists in the development of

algorithms for seeking out occurrences of the music objects or their subparts

within the passage (objects that can be recognized by the computer itself or

provided by the user). In this regard, we must consider two elements: the

attributes of the single note, and the music transformation the note has

undergone together with the notes that precede and/or follow it. The attributes

are the timing, the accent, the name of the note, the pitch in halftones, and the

course of the intervals. In regard to transformations, here we have considered

those applied to the attributes of position, or degree, both in the tonal and

diatonic scale. These transformations have been realized by means of three

different types of algebraic operators and their combinations: precisely,

transposition, mirror-inversion, retrogradation operators. As we have already

pointed out, these operators realize the correspondent music tonal

transformations, when applied to the pitch in halftones, and the real

transformations, when applied to the name of the notes. To render flexible this

analysis tool we can intervene iteratively to modify significantly the "style" with

which the researches are carried on, choosing which attributes must be

considered, which tranformations and which variability rate must be applied to

the tonal analysis. A second aspect is the real segmentation. We simply focused

on the music form of the fugue, generalizing it to the other forms even if it

would be opportune to enlarge the algorithm so as to single out the theme of the

other forms with more precision and specificity. For singling out the objects we

focused not only upon their repetitions because, although obviously a necessary

aspect, they are insufficient for music purposes. A theme has in fact a tonal and

metric system too (except in modern music) which must be taken into

consideration. Thus we make some requests for notes of the hypothetic themes,

in relation to the belonging and assertion of the tonalities according to the type

of object (thetic, acephalous and anacrustic) and in relation to the

exhaustiveness and completeness of the music (as an expression of the metrics).

Also for this singling out of themes phase we have arranged a series of

parameters which must be specified iteratively in regard both to the valuable

elements in the definition of the theme (tonality,metrics, length of phrasing,

minimum number of repetitions, etc.), and to the same repetition of the objects.

How the module ModelSynth performs the
analysis/re-synthesis task

In substance, ModeSynth performs an operation opposite to the ScoreSegmenter

one. In fact, it tries to re-form the structure of the analyzed and atomized music

passage. In order not to be a redundant migration, this operation must

obviously give some significant features to the final structure of the passage.

These features can be summed up in one: representing the informative content

of the passage with flexible models (and by "informative" we mean the link

between the constituent atoms and their transformations during the process).

What we achieve is the analysis of an analysis, in order on the one hand to

provide an alternative representation and on the other to extract and code the

information for the re-synthesis. The first analysis performed by Modelsynth

consists in parsing the table produced by the ScoreSegmenter, generated by the

request of segmentation of a passage, using as a support the relative

Workingfile. This phase allows the representation in intermediate format of the

results contained in the tables. Or it saves all the recognized themes giving a

reference code, subdivides all the atoms by voice, rearranges their occurrences

according to a time key, and recovers from the Workingfile all the parts

(sequences of notes and rests) which we can call "rejects" judged insignificant

by the segmentation algorithm but considered the link among the different

atoms. Secondly, we have to consider the operators applied to the atoms. Since

the operators recognized by the ScoreSegmenter are a narrow subset of those

available in ScoreSynth, this operation is immediate. At this point ModelSynth

has at its disposal all the information to operate its own analysis, as well as the

automatic construction of a Petri Net model in the ScoreSynth format.

Correspondent to the starting passage, the latter brings out, if present, the

relational constructions and the used transformation functions. Fundamentally,

in this phase we can exploit the mechanisms of parametric calls at hierarchic

nets disposed by ScoreSynth. These realize the division between the structure of

the passage and the themes. The structure is identified by the relations among

the themes, their repetitions and their transformations; and it is also codified

into a model. The themes only play the role of data. The analysis proceeds

considering the voices singularly. The structures we try to recognize are the

simple loops, the loops with selection and the repetition of specific patterns. By

simple loops we intend the succession of a theme or relative transformation. For

example, considering the theme A and an operator T, we can represent by means

of a macro-net a succession as follows

 T (A) - T (A) - T (A) - T (A)

realizing a loop to which the theme, operator and number of the repetitions are

passed as parameters. A loop with selection instead occurs when the operator

(applied to a same theme) varies. For example, in the succession

 T (A) - R (A) - I (A)

This construction type always uses as a basis a loop-type net. The difference

consists in the fact the object of the looping is not a single element, but a

macro-subnet to whom the operators to apply at each cycle are passed as

parameters. Besides the resolution of the loops, we must also recognize the

patterns. These can be sought out at different levels. For example, at the

operators level in successions concerning a same theme, as follows:

 T (A) - R (A) - T (A) -R (A) - T (A) - R (A)

At the themes level, as follows

 T (A) - R (B) - I (C) -T (A) - R (B) - I (C)

Or, finally, at the whole nets level. The most significant phases of the

ModelSynth analysis can also be summed up through the following steps:

i) creation of an intermediate representation;

ii) pattern recognition on the operators;

iii) recognition of simple loops or with selection ones;

iv) pattern recognition on themes;

v) pattern recognition on whole nets;

vi) go to v).

The analysis process continues only if step v) is able to operate at least one

recognition. In the Petri Nets represented in the following figures we show the

possible result concerning the most general aspects of the analysis operated by

ModelSynth on a passage whose name is PieceX. In particular Fig. 3 represents

the net of the highest level of the model; Fig. 4 the subnet concerning the

involved parts (in this example, three); and Fig. 5 the net collecting all the

complete themes recognized by ScoreSegmenter. Fig. 6 instead shows how in

the model the application of an operator to a theme can be represented: the

operator in the line below shows that the transformation operated by it refers to

the theme Theme2. This simple net could be invoked many times in a model as

follows: the generated net of highest level (see Fig. 3), the PieceX net (see Fig.

4), the net with all the recognized themes (see Fig. 5), an example of application

of a transformation operator to a theme (see Fig. 6).

A Comprehensive Example of Automated Score Modelling

This chapter will take a look at a complete example showing how a PN model is

generated. The musical score we consider is the “Invenzione N°1 a due voci per

pianoforte” by J.S.Bach. See the complete score in Figure 7.

Here follows the atom tables generated by ScoreSegmenter:

TONALITY

C

RESEARCH OF THE THEME NUMBER 1 FORMED BY:

C_W_1/16 +D_S_1/16 +E_W_1/16 +F_S_1/16 -D_W_1/16 +E_S_1/16

-C_W_1/16 +G_S_1/8 +C_W_1/8 -B_S_1/8 +C_W_1/8 +D_S_1/16

RECUR VC MEA NT(start) MEA NT(end) OPER

1 t 1 1 2 C 2 1 D RT(0)

2 t 2 7 2 G 8 1 A RT(7)

There was found in all 2 themes of which:

 2 Real Transpositions

 0 Tonal Transpositions

 0 Real Inversions

 0 Tonal Inversions

RESEARCH OF THE THEME NUMBER 2 FORMED BY:

C_W_1/16 +D_S_1/16 +E_W_1/16 +F_S_1/16 -D_W_1/16 +E_S_1/16

-C_W_1/16 +G_S_1/8

RECUR VC MEA NT(start) MEA NT(end) OPER

1 t 1 1 2 C 1 9 G RT(0)

2 t 1 2 2 G 2 9 D RT(7)

3 t 1 20 2 G 20 9 C TT(4)

4 t 2 1 3 C 2 1 G RT(0)

5 t 2 2 5 G 3 1 C TT(4)

6 t 2 5 2 D 5 9 G TT(1)

7 t 2 7 2 G 7 9 D RT(7)

8 t 2 8 2 D 8 9 A RT(2)

There was found in all 8 themes of which:

 5 Real Transpositions

 3 Tonal Transpositions

 0 Real Inversions

 0 Tonal Inversions

RESEARCH OF THE THEME NUMBER 3 FORMED BY:

G_W_1/8 -F_S_1/8 +G_W_1/8 -E_S_1/16

RECUR VC MEA NT(start) MEA NT(end) OPER

1 t 1 2 10 G 3 1 E RT(0)

There was found in all 1 themes of which:

 1 Real Transpositions

 0 Tonal Transpositions

 0 Real Inversions

 0 Tonal Inversions

RESEARCH OF THE THEME NUMBER 4 FORMED BY:

B_W_1/8 +C_S_1/8 +D_W_1/8 +E_S_1/8

RECUR VC MEA NT(start) MEA NT(end) OPER

1 t 1 11 2 C 11 5 F TT(1)

2 t 1 11 6 A 12 1 D TT(6)

3 t 1 12 2 F 12 5 B TT(4)

4 t 2 3 2 B 3 5 E RT(0)

5 t 2 3 6 G 4 1 C TT(5)

6 t 2 4 2 E 4 5 A TT(3)

7 t 2 5 10 B 6 1 E RT(0)

8 t 2 5 12 D 6 3 G TT(2)

9 t 2 19 2 B 19 5 F RI(9)

10 t 2 19 6 D 20 1 A TI(0)

There was found in all 10 themes of which:

 2 Real Transpositions

 6 Tonal Transpositions

 1 Real Inversions

 1 Tonal Inversions

After ModelSynth parsing of the above table, we obtained this atom list. The

atoms marked with “No” are the ones discarded because in conflict with one

another. If a conflict happens, the longest (referring to the note number in it) or,

at least, the first is chosen. In this list we put in evidence the multiple

occurrence of the same theme using a framing rectangle.

IND TYP OK REC THE VC MEA NTS MEA NTE
1 T Yes 1 1 1 1 2 2 1
2 T No 1 2 1 1 2 1 9
3 T Yes 2 2 1 2 2 2 9
4 T Yes 1 3 1 2 10 3 1
5 T Yes 1 4 1 11 2 11 5
6 T Yes 2 4 1 11 6 12 1
7 T Yes 3 4 1 12 2 12 5
8 T Yes 3 2 1 20 2 20 9
9 T Yes 4 2 2 1 3 2 1
10 T Yes 5 2 2 2 5 3 1
11 T Yes 4 4 2 3 2 3 5
12 T Yes 5 4 2 3 6 4 1
13 T Yes 6 4 2 4 2 4 5
14 T Yes 6 2 2 5 2 5 9
15 T Yes 7 4 2 5 10 6 1
16 T No 8 4 2 5 12 6 3
17 T No 7 2 2 7 2 7 9
18 T Yes 2 1 2 7 2 8 1
19 T Yes 8 2 2 8 2 8 9
20 T Yes 9 4 2 19 2 19 5
21 T Yes 10 4 2 19 6 20 1

Now we indicate in the score all the significant atoms by theme,

ScoreSegmenter reference number, and applied operator (see Figure 8).

We can now see some generated nets included in the generated model: the

highest level net Inv 1/Top (see Figure 9), the net Inv 1/Th with the list of the

recognized themes (see Figure 10), the net Inv 1/Vc listings all the voices (see

Figure 11), the net Inv 1/Vc1 specifying the first voice (see Figure 12). Note

the presence of a rest, associated to the second place, named Rest.

To all the place nodes filled with the „net pattern‟ we associate a subnet by

means of a refinement morphism corresponding to a template net, taken from a

library with a list of modifying parameters. Consider for example the segment

Inv 1/Sg1_4 (see Figure 13) and the parameter list for the macro net which

corresponds to place Obj (see Figure 14).

The entire model hierarchy and dependency levels are shown better within the

exploded list in the window of Figure 15.

Future developments

The environment for the analysis/re-synthesis of scores briefly described here

has to be considered a prototype for experimental research whose potential for

further subtlety in analysis phases is directly proportional to the systematic

experimentation we can carry out according to the following primary purposes:

I) generalization of the segmentation capacity of the ScoreSegmenter to the

most various music forms; at present, though able to decompose any score, it

has more capacity, or better it produces fewer rejects, with passages in fugue or

sonata form;

II) extent of the analysis/re-synthesis capacities of ModelSynth for the

recognition of related structures extending the current idea of macro-net in such

a way that a macro-net can be considered as a parameter of another macro-net;

this possibility requires a coherent extension of the ScoreSynth module. In more

general terms, we can think of an approach such as the one followed here in the

case of the music scores, applied to the case of the multimedial processes, where

it is possible to decompose, to organize in generative models and to synthetize

processes established by sounds, images and texts.

Acknowledgements

Many thanks to F. Lonati for the design and development of the Score

Segmenter program. Moreover, special thanks are due to the L.I.M.-Laboratorio

di Informatica Musicale staff for the scientific and technical support provided

all throughout our research.

This research has been supported by the Italian National Research Council in

the frame of the MUSIC Topic (LRC C4): "INTELLIGENT MUSIC

WORKSTATION", Goal C: SISTEMI AVANZATI DI PRODUTTIVITA'

INDIVIDUALE, Subproject 7: SISTEMI DI SUPPORTO AL LAVORO

INTELLETTUALE, Finalized Project SISTEMI INFORMATICI E CALCOLO

PARALLELO.

References

Haus, G.; Sametti, A. (1992). SCORESYNTH: a System for the Synthesis of

Music Scores based on Petri Nets and a Music Algebra. In D. Baggi (ed.),

Readings in Computer Generated Music (pp.53-78). Washington: IEEE

Computer Society Press.

Lonati, F. (1991a). Guida operativa del modulo "ScoreSegmenter". Tech.

Report M/18. Milan: CNR-PFI2 MUSIC Series.

Lonati, F. (1991b). Note tecniche del modulo "ScoreSegmenter". Tech. Report

M/19. Milan: CNR-PFI2 MUSIC Series.
Pighi, I. et al. (1993). Integrazione dell'architettura e delle specifiche funzionali

di alto livello dei moduli della Stazione di Lavoro Musicale Intelligente - Unità

Operativa dell'Università degli Studi di Milano, Tech. Report M/42. Milan:

CNR-PFI2 MUSIC Series.

ModelSynth

ScoreSynth

ScoreSegm enter

Fig. 1: Software modules architecture.

ScoreSegmen ter ScoreSynth

Mode l Synth

SMF objects,
 tables

SMF objects,
PN model

scores SMF scores

Fig. 2: Input/output flows.

1

1

Start PieceX

Fig. 3: The highest level net which has been generated.

0

1

Voice 1 Voice 3Voice 2

0

1

0

1

0

1

Fig. 4: The net “PieceX”.

Theme1

0

1

Theme2

0

1

Theme3

0

1

Theme4

0

1

Fig. 5: The net with all the recognized themes.

0

1

OpX

0

1

0

1

OpX = P : 1, $, [Te ma2, 1], ? + 7

Alg X (Tema X)

Fig. 6: An example of transposition operator applied to a theme.

Figure 7: The original score to be analyzed.

Figure 8: Music objects and operators which have been recognized by the

ScoreSegmenter analysis.

Figure 9: The highest level net Inv 1/Top.

Figure 10: The net Inv 1/Th with the list of the recognized themes.

Figure 11: The net Inv 1/Vc listings all the voices.

Figure 12: The net Inv 1/Vc1 that specifies the first voice.

Figure 13: The template net for the segment Inv 1/Sg1_4.

Figure 14: The parameter list for the macro net which corresponds to place

Obj.

Figure 15: The window which shows the entire model hierarchy and

dependency levels.

